Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6371, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493232

RESUMO

Marine sponges host diverse microbial communities. Although we know many of its ecological patterns, a deeper understanding of the polar sponge holobiont is still needed. We combine high-throughput sequencing of ribosomal genes, including the largest taxonomic repertoire of Antarctic sponge species analyzed to date, functional metagenomics, and metagenome-assembled genomes (MAGs). Our findings show that sponges harbor more exclusive bacterial and archaeal communities than seawater, while microbial eukaryotes are mostly shared. Furthermore, bacteria in Antarctic sponge holobionts establish more cooperative interactions than in sponge holobionts from other environments. The bacterial classes that established more positive relations were Bacteroidia, Gamma- and Alphaproteobacteria. Antarctic sponge microbiomes contain microbial guilds that encompass ammonia-oxidizing archaea, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and sulfur-oxidizing bacteria. The retrieved MAGs showed a high level of novelty and streamlining signals and belong to the most abundant members of the main microbial guilds in the Antarctic sponge holobiont. Moreover, the genomes of these symbiotic bacteria contain highly abundant functions related to their adaptation to the cold environment, vitamin production, and symbiotic lifestyle, helping the holobiont survive in this extreme environment.


Assuntos
Microbiota , Poríferos , Animais , Poríferos/microbiologia , Regiões Antárticas , Amônia , Archaea/genética , Bactérias/genética , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética
2.
ISME J ; 17(12): 2247-2258, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37853183

RESUMO

The management of bacterial pathogens remains a key challenge of aquaculture. The marine gammaproteobacterium Piscirickettsia salmonis is the etiological agent of piscirickettsiosis and causes multi-systemic infections in different salmon species, resulting in considerable mortality and substantial commercial losses. Here, we elucidate its global diversity, evolution, and selection during human interventions. Our comprehensive analysis of 73 closed, high quality genome sequences covered strains from major outbreaks and was supplemented by an analysis of all P. salmonis 16S rRNA gene sequences and metagenomic reads available in public databases. Genome comparison showed that Piscirickettsia comprises at least three distinct, genetically isolated species of which two showed evidence for continuing speciation. However, at least twice the number of species exist in marine fish or seawater. A hallmark of Piscirickettsia diversification is the unprecedented amount and diversity of transposases which are particularly active in subgroups undergoing rapid speciation and are key to the acquisition of novel genes and to pseudogenization. Several group-specific genes are involved in surface antigen synthesis and may explain the differences in virulence between strains. However, the frequent failure of antibiotic treatment of piscirickettsiosis outbreaks cannot be explained by horizontal acquisition of resistance genes which so far occurred only very rarely. Besides revealing a dynamic diversification of an important pathogen, our study also provides the data for improving its surveillance, predicting the emergence of novel lineages, and adapting aquaculture management, and thereby contributes towards the sustainability of salmon farming.


Assuntos
Doenças dos Peixes , Piscirickettsia , Infecções por Piscirickettsiaceae , Animais , Humanos , Piscirickettsia/genética , Infecções por Piscirickettsiaceae/veterinária , Infecções por Piscirickettsiaceae/microbiologia , RNA Ribossômico 16S/genética , Peixes , Doenças dos Peixes/microbiologia
3.
Fish Shellfish Immunol ; 89: 505-515, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30940577

RESUMO

The scallop Argopecten purpuratus is one of the most economically important cultured mollusks on the coasts from Chile and Peru but its production has declined, in part, due to the emergence of mass mortality events of unknown origin. Driven by this scenario, increasing progress has been made in recent years in the comprehension of immune response mechanisms in this species. However, it is still not entirely understood how different mucosal interfaces participate and cooperate with the immune competent cells, the hemocytes, in the immune defense. Thus, in this work we aimed to characterize the transcriptome of three tissues with immune relevance from A. purpuratus by next-generation sequencing and de novo transcriptome assembly. For this, 18 cDNA libraries were constructed from digestive gland, gills and hemocytes tissues of scallops from different immune conditions and sequenced by the Illumina HiSeq4000 platform. A total of 967.964.884 raw reads were obtained and 967.432.652 clean reads were generated. The clean reads were de novo assembled into 46.601 high quality contigs and 32.299 (69.31%) contigs were subsequently annotated. In addition, three de novo specific assemblies were performed from clean reads obtained from each tissue cDNA libraries for their comparison. Gene ontology (GO) and KEGG analyses revealed that annotated sequences from digestive gland, gills and hemocytes could be classified into both general and specific subcategory terms and known biological pathways, respectively, according to the tissue nature. Finally, several immune related candidate genes were identified, and the differential expression of tissue-specific genes was established, suggesting they could display specific roles in the host defense. The data presented in this study provide the first insight into the tissue specific transcriptome profiles of A. purpuratus, which should be considered for further research on the interplay between the hemocytes and mucosal immune responses.


Assuntos
Pectinidae/genética , Transcriptoma/imunologia , Animais , Perfilação da Expressão Gênica , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Pectinidae/imunologia
4.
Infect Genet Evol ; 63: 151-157, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29860100

RESUMO

Piscirickettsia salmonis is a highly aggressive facultative intracellular bacterium that challenges the sustainability of Chilean salmon production. Due to the limited knowledge of its biology, there is a need to identify key molecular markers that could help define the pathogenic potential of this bacterium. We think a model system should be implemented that efficiently evaluates the expression of putative bacterial markers by using validated, stable, and highly specific housekeeping genes to properly select target genes, which could lead to identifying those responsible for infection and disease induction in naturally infected fish. Here, we selected a set of validated reference or housekeeping genes for RT-qPCR expression analyses of P. salmonis under different growth and stress conditions, including an in vitro infection kinetic. After a thorough screening, we selected sdhA as the most reliable housekeeping gene able to represent stable and highly specific host reference genes for RT-qPCR-driven P. salmonis analysis.


Assuntos
Proteínas de Bactérias/genética , Flavoproteínas/genética , Genes Bacterianos , Genes Essenciais , Piscirickettsia/genética , Piscirickettsia/patogenicidade , Reação em Cadeia da Polimerase em Tempo Real/normas , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , Chile , DNA Girase/genética , DNA Girase/metabolismo , Primers do DNA/síntese química , Primers do DNA/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Doenças dos Peixes/microbiologia , Doenças dos Peixes/patologia , Flavoproteínas/metabolismo , Expressão Gênica , Macrófagos/microbiologia , Piscirickettsia/crescimento & desenvolvimento , Piscirickettsia/metabolismo , Infecções por Piscirickettsiaceae/microbiologia , Infecções por Piscirickettsiaceae/patologia , Padrões de Referência , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Salmão/microbiologia , Fator sigma/genética , Fator sigma/metabolismo
5.
Microb Pathog ; 92: 11-18, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26706346

RESUMO

Piscirickettsia salmonis seriously affects the Chilean salmon industry. The bacterium is phylogenetically related to Legionella pneumophila and Coxiella burnetii, sharing a Dot/Icm secretion system with them. Although it is well documented that L. pneumophila and C. burnetii secrete different virulence effectors via this Dot/Icm system in order to attenuate host cell responses, to date there have been no reported virulence effectors secreted by the Dot/Icm system of P. salmonis. Using several annotations of P. salmonis genome, here we report an in silico analyses of 4 putative Dot/Icm effectors. Three of them contain ankyrin repeat domains and the typical conserved 3D structures of this protein family. The fourth one is highly similar to one of the Dot/Icm-dependent effectors of L. pneumophila. Additionally, all the potential P. salmonis effectors contain a classical Dot/Icm secretion signal in their C-terminus, consisting of: an E-Block, a hydrophobic residue in -3 or -4 and an electronegative charge. Finally, qPCR analysis demonstrated that these proteins are overexpressed early in infection, perhaps contributing to the generation of a replicative vacuole, a key step in the neutralizing strategy proposed for the Dot/Icm system. In summary, this report identifies four Dot/Icm-dependent effectors in P. salmonis.


Assuntos
Piscirickettsia/classificação , Piscirickettsia/metabolismo , Sistemas de Secreção Tipo IV , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Expressão Gênica , Genoma Bacteriano , Modelos Moleculares , Fases de Leitura Aberta , Piscirickettsia/genética , Piscirickettsia/patogenicidade , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...